223 lines
6.1 KiB
JavaScript
223 lines
6.1 KiB
JavaScript
![]() |
/*
|
||
|
Copyright (c) 2004-2006, The Dojo Foundation
|
||
|
All Rights Reserved.
|
||
|
|
||
|
Licensed under the Academic Free License version 2.1 or above OR the
|
||
|
modified BSD license. For more information on Dojo licensing, see:
|
||
|
|
||
|
http://dojotoolkit.org/community/licensing.shtml
|
||
|
*/
|
||
|
|
||
|
dojo.provide("dojo.math.curves");
|
||
|
|
||
|
dojo.require("dojo.math");
|
||
|
|
||
|
/* Curves from Dan's 13th lib stuff.
|
||
|
* See: http://pupius.co.uk/js/Toolkit.Drawing.js
|
||
|
* http://pupius.co.uk/dump/dojo/Dojo.Math.js
|
||
|
*/
|
||
|
|
||
|
dojo.math.curves = {
|
||
|
//Creates a straight line object
|
||
|
Line: function(start, end) {
|
||
|
this.start = start;
|
||
|
this.end = end;
|
||
|
this.dimensions = start.length;
|
||
|
|
||
|
for(var i = 0; i < start.length; i++) {
|
||
|
start[i] = Number(start[i]);
|
||
|
}
|
||
|
|
||
|
for(var i = 0; i < end.length; i++) {
|
||
|
end[i] = Number(end[i]);
|
||
|
}
|
||
|
|
||
|
//simple function to find point on an n-dimensional, straight line
|
||
|
this.getValue = function(n) {
|
||
|
var retVal = new Array(this.dimensions);
|
||
|
for(var i=0;i<this.dimensions;i++)
|
||
|
retVal[i] = ((this.end[i] - this.start[i]) * n) + this.start[i];
|
||
|
return retVal;
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
},
|
||
|
|
||
|
|
||
|
//Takes an array of points, the first is the start point, the last is end point and the ones in
|
||
|
//between are the Bezier control points.
|
||
|
Bezier: function(pnts) {
|
||
|
this.getValue = function(step) {
|
||
|
if(step >= 1) return this.p[this.p.length-1]; // if step>=1 we must be at the end of the curve
|
||
|
if(step <= 0) return this.p[0]; // if step<=0 we must be at the start of the curve
|
||
|
var retVal = new Array(this.p[0].length);
|
||
|
for(var k=0;j<this.p[0].length;k++) { retVal[k]=0; }
|
||
|
for(var j=0;j<this.p[0].length;j++) {
|
||
|
var C=0; var D=0;
|
||
|
for(var i=0;i<this.p.length;i++) {
|
||
|
C += this.p[i][j] * this.p[this.p.length-1][0]
|
||
|
* dojo.math.bernstein(step,this.p.length,i);
|
||
|
}
|
||
|
for(var l=0;l<this.p.length;l++) {
|
||
|
D += this.p[this.p.length-1][0] * dojo.math.bernstein(step,this.p.length,l);
|
||
|
}
|
||
|
retVal[j] = C/D;
|
||
|
}
|
||
|
return retVal;
|
||
|
}
|
||
|
this.p = pnts;
|
||
|
return this;
|
||
|
},
|
||
|
|
||
|
|
||
|
//Catmull-Rom Spline - allows you to interpolate a smooth curve through a set of points in n-dimensional space
|
||
|
CatmullRom : function(pnts,c) {
|
||
|
this.getValue = function(step) {
|
||
|
var percent = step * (this.p.length-1);
|
||
|
var node = Math.floor(percent);
|
||
|
var progress = percent - node;
|
||
|
|
||
|
var i0 = node-1; if(i0 < 0) i0 = 0;
|
||
|
var i = node;
|
||
|
var i1 = node+1; if(i1 >= this.p.length) i1 = this.p.length-1;
|
||
|
var i2 = node+2; if(i2 >= this.p.length) i2 = this.p.length-1;
|
||
|
|
||
|
var u = progress;
|
||
|
var u2 = progress*progress;
|
||
|
var u3 = progress*progress*progress;
|
||
|
|
||
|
var retVal = new Array(this.p[0].length);
|
||
|
for(var k=0;k<this.p[0].length;k++) {
|
||
|
var x1 = ( -this.c * this.p[i0][k] ) + ( (2 - this.c) * this.p[i][k] ) + ( (this.c-2) * this.p[i1][k] ) + ( this.c * this.p[i2][k] );
|
||
|
var x2 = ( 2 * this.c * this.p[i0][k] ) + ( (this.c-3) * this.p[i][k] ) + ( (3 - 2 * this.c) * this.p[i1][k] ) + ( -this.c * this.p[i2][k] );
|
||
|
var x3 = ( -this.c * this.p[i0][k] ) + ( this.c * this.p[i1][k] );
|
||
|
var x4 = this.p[i][k];
|
||
|
|
||
|
retVal[k] = x1*u3 + x2*u2 + x3*u + x4;
|
||
|
}
|
||
|
return retVal;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
if(!c) this.c = 0.7;
|
||
|
else this.c = c;
|
||
|
this.p = pnts;
|
||
|
|
||
|
return this;
|
||
|
},
|
||
|
|
||
|
// FIXME: This is the bad way to do a partial-arc with 2 points. We need to have the user
|
||
|
// supply the radius, otherwise we always get a half-circle between the two points.
|
||
|
Arc : function(start, end, ccw) {
|
||
|
var center = dojo.math.points.midpoint(start, end);
|
||
|
var sides = dojo.math.points.translate(dojo.math.points.invert(center), start);
|
||
|
var rad = Math.sqrt(Math.pow(sides[0], 2) + Math.pow(sides[1], 2));
|
||
|
var theta = dojo.math.radToDeg(Math.atan(sides[1]/sides[0]));
|
||
|
if( sides[0] < 0 ) {
|
||
|
theta -= 90;
|
||
|
} else {
|
||
|
theta += 90;
|
||
|
}
|
||
|
dojo.math.curves.CenteredArc.call(this, center, rad, theta, theta+(ccw?-180:180));
|
||
|
},
|
||
|
|
||
|
// Creates an arc object, with center and radius (Top of arc = 0 degrees, increments clockwise)
|
||
|
// center => 2D point for center of arc
|
||
|
// radius => scalar quantity for radius of arc
|
||
|
// start => to define an arc specify start angle (default: 0)
|
||
|
// end => to define an arc specify start angle
|
||
|
CenteredArc : function(center, radius, start, end) {
|
||
|
this.center = center;
|
||
|
this.radius = radius;
|
||
|
this.start = start || 0;
|
||
|
this.end = end;
|
||
|
|
||
|
this.getValue = function(n) {
|
||
|
var retVal = new Array(2);
|
||
|
var theta = dojo.math.degToRad(this.start+((this.end-this.start)*n));
|
||
|
|
||
|
retVal[0] = this.center[0] + this.radius*Math.sin(theta);
|
||
|
retVal[1] = this.center[1] - this.radius*Math.cos(theta);
|
||
|
|
||
|
return retVal;
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
},
|
||
|
|
||
|
// Special case of Arc (start = 0, end = 360)
|
||
|
Circle : function(center, radius) {
|
||
|
dojo.math.curves.CenteredArc.call(this, center, radius, 0, 360);
|
||
|
return this;
|
||
|
},
|
||
|
|
||
|
Path : function() {
|
||
|
var curves = [];
|
||
|
var weights = [];
|
||
|
var ranges = [];
|
||
|
var totalWeight = 0;
|
||
|
|
||
|
this.add = function(curve, weight) {
|
||
|
if( weight < 0 ) { dojo.raise("dojo.math.curves.Path.add: weight cannot be less than 0"); }
|
||
|
curves.push(curve);
|
||
|
weights.push(weight);
|
||
|
totalWeight += weight;
|
||
|
computeRanges();
|
||
|
}
|
||
|
|
||
|
this.remove = function(curve) {
|
||
|
for(var i = 0; i < curves.length; i++) {
|
||
|
if( curves[i] == curve ) {
|
||
|
curves.splice(i, 1);
|
||
|
totalWeight -= weights.splice(i, 1)[0];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
computeRanges();
|
||
|
}
|
||
|
|
||
|
this.removeAll = function() {
|
||
|
curves = [];
|
||
|
weights = [];
|
||
|
totalWeight = 0;
|
||
|
}
|
||
|
|
||
|
this.getValue = function(n) {
|
||
|
var found = false, value = 0;
|
||
|
for(var i = 0; i < ranges.length; i++) {
|
||
|
var r = ranges[i];
|
||
|
//w(r.join(" ... "));
|
||
|
if( n >= r[0] && n < r[1] ) {
|
||
|
var subN = (n - r[0]) / r[2];
|
||
|
value = curves[i].getValue(subN);
|
||
|
found = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// FIXME: Do we want to assume we're at the end?
|
||
|
if( !found ) {
|
||
|
value = curves[curves.length-1].getValue(1);
|
||
|
}
|
||
|
|
||
|
for(var j = 0; j < i; j++) {
|
||
|
value = dojo.math.points.translate(value, curves[j].getValue(1));
|
||
|
}
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
function computeRanges() {
|
||
|
var start = 0;
|
||
|
for(var i = 0; i < weights.length; i++) {
|
||
|
var end = start + weights[i] / totalWeight;
|
||
|
var len = end - start;
|
||
|
ranges[i] = [start, end, len];
|
||
|
start = end;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
}
|
||
|
};
|