Improve output: distinguish between failed assertions (failures) and unexpected exceptions (errors), and print a filtered stack trace for any exception.
This commit is contained in:
commit
4f2e303079
1839 changed files with 235630 additions and 0 deletions
305
webapp/web/src/math/matrix.js
Normal file
305
webapp/web/src/math/matrix.js
Normal file
|
@ -0,0 +1,305 @@
|
|||
/*
|
||||
Copyright (c) 2004-2006, The Dojo Foundation
|
||||
All Rights Reserved.
|
||||
|
||||
Licensed under the Academic Free License version 2.1 or above OR the
|
||||
modified BSD license. For more information on Dojo licensing, see:
|
||||
|
||||
http://dojotoolkit.org/community/licensing.shtml
|
||||
*/
|
||||
|
||||
dojo.provide("dojo.math.matrix");
|
||||
|
||||
//
|
||||
// some of this code is based on
|
||||
// http://www.mkaz.com/math/MatrixCalculator.java
|
||||
// (published under a BSD Open Source License)
|
||||
//
|
||||
// the rest is from my vague memory of matricies in school [cal]
|
||||
//
|
||||
// the copying of arguments is a little excessive, and could be trimmed back in
|
||||
// the case where a function doesn't modify them at all (but some do!)
|
||||
//
|
||||
|
||||
dojo.math.matrix.iDF = 0;
|
||||
|
||||
dojo.math.matrix.multiply = function(a, b){
|
||||
|
||||
a = dojo.math.matrix.copy(a);
|
||||
b = dojo.math.matrix.copy(b);
|
||||
|
||||
var ax = a[0].length;
|
||||
var ay = a.length;
|
||||
var bx = b[0].length;
|
||||
var by = b.length;
|
||||
|
||||
if (ax != by){
|
||||
dojo.debug("Can't multiply matricies of sizes "+ax+','+ay+' and '+bx+','+by);
|
||||
return [[0]];
|
||||
}
|
||||
|
||||
var c = [];
|
||||
|
||||
for(var k=0; k<ay; k++){
|
||||
c[k] = [];
|
||||
for(var i=0; i<bx; i++){
|
||||
|
||||
c[k][i] = 0;
|
||||
|
||||
for(var m=0; m<ax; m++){
|
||||
|
||||
c[k][i] += a[k][m]*b[m][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
dojo.math.matrix.inverse = function(a){
|
||||
|
||||
a = dojo.math.matrix.copy(a);
|
||||
|
||||
// Formula used to Calculate Inverse:
|
||||
// inv(A) = 1/det(A) * adj(A)
|
||||
|
||||
var tms = a.length;
|
||||
|
||||
var m = dojo.math.matrix.create(tms, tms);
|
||||
var mm = dojo.math.matrix.adjoint(a);
|
||||
|
||||
var det = dojo.math.matrix.determinant(a);
|
||||
var dd = 0;
|
||||
|
||||
if (det == 0){
|
||||
dojo.debug("Determinant Equals 0, Not Invertible.");
|
||||
return [[0]];
|
||||
}else{
|
||||
dd = 1 / det;
|
||||
}
|
||||
|
||||
for (var i = 0; i < tms; i++)
|
||||
for (var j = 0; j < tms; j++) {
|
||||
m[i][j] = dd * mm[i][j];
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
dojo.math.matrix.determinant = function(a){
|
||||
|
||||
a = dojo.math.matrix.copy(a);
|
||||
|
||||
if (a.length != a[0].length){
|
||||
dojo.debug("Can't calculate the determiant of a non-squre matrix!");
|
||||
return 0;
|
||||
}
|
||||
|
||||
var tms = a.length;
|
||||
var det = 1;
|
||||
|
||||
var b = dojo.math.matrix.upperTriangle(a);
|
||||
|
||||
for (var i=0; i < tms; i++){
|
||||
det *= b[i][i];
|
||||
}
|
||||
|
||||
det = det * dojo.math.matrix.iDF;
|
||||
|
||||
return det;
|
||||
}
|
||||
|
||||
dojo.math.matrix.upperTriangle = function(m){
|
||||
|
||||
m = dojo.math.matrix.copy(m);
|
||||
|
||||
var f1 = 0;
|
||||
var temp = 0;
|
||||
var tms = m.length;
|
||||
var v = 1;
|
||||
|
||||
dojo.math.matrix.iDF = 1;
|
||||
|
||||
for (var col = 0; col < tms - 1; col++) {
|
||||
for (var row = col + 1; row < tms; row++) {
|
||||
v = 1;
|
||||
|
||||
var stop_loop = 0;
|
||||
|
||||
// check if 0 in diagonal
|
||||
while ((m[col][col] == 0) && !stop_loop){
|
||||
|
||||
// if so switch until not
|
||||
if (col + v >= tms){
|
||||
|
||||
// check if switched all rows
|
||||
dojo.math.matrix.iDF = 0;
|
||||
stop_loop = 1;
|
||||
}else{
|
||||
for (var c = 0; c < tms; c++) {
|
||||
temp = m[col][c];
|
||||
m[col][c] = m[col + v][c]; // switch rows
|
||||
m[col + v][c] = temp;
|
||||
}
|
||||
v++; // count row switchs
|
||||
dojo.math.matrix.iDF *= -1; // each switch changes determinant factor
|
||||
}
|
||||
}
|
||||
|
||||
if (m[col][col] != 0) {
|
||||
f1 = (-1) * m[row][col] / m[col][col];
|
||||
for (var i = col; i < tms; i++) {
|
||||
m[row][i] = f1 * m[col][i] + m[row][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
dojo.math.matrix.create = function(a, b){
|
||||
var m = [];
|
||||
for(var i=0; i<b; i++){
|
||||
m[i] = [];
|
||||
for(var j=0; j<a; j++){
|
||||
m[i][j] = 0;
|
||||
}
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
dojo.math.matrix.adjoint = function(a){
|
||||
|
||||
a = dojo.math.matrix.copy(a);
|
||||
|
||||
var tms = a.length;
|
||||
|
||||
if (a.length != a[0].length){
|
||||
dojo.debug("Can't find the adjoint of a non-square matrix");
|
||||
return [[0]];
|
||||
}
|
||||
|
||||
if (tms == 1){
|
||||
dojo.debug("Can't find the adjoint of a 1x1 matrix");
|
||||
return [[0]];
|
||||
}
|
||||
|
||||
var m = dojo.math.matrix.create(tms, tms);
|
||||
|
||||
var ii = 0;
|
||||
var jj = 0;
|
||||
var ia = 0;
|
||||
var ja = 0;
|
||||
var det = 0;
|
||||
|
||||
for (var i = 0; i < tms; i++){
|
||||
for (var j = 0; j < tms; j++){
|
||||
|
||||
ia = 0;
|
||||
ja = 0;
|
||||
|
||||
var ap = dojo.math.matrix.create(tms-1, tms-1);
|
||||
|
||||
for (ii = 0; ii < tms; ii++) {
|
||||
for (jj = 0; jj < tms; jj++) {
|
||||
|
||||
if ((ii != i) && (jj != j)) {
|
||||
ap[ia][ja] = a[ii][jj];
|
||||
ja++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if ((ii != i) && (jj != j)) {
|
||||
ia++;
|
||||
}
|
||||
ja = 0;
|
||||
}
|
||||
|
||||
det = dojo.math.matrix.determinant(ap);
|
||||
m[i][j] = Math.pow(-1 , (i + j)) * det;
|
||||
}
|
||||
}
|
||||
|
||||
m = dojo.math.matrix.transpose(m);
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
dojo.math.matrix.transpose = function(a){
|
||||
|
||||
a = dojo.math.matrix.copy(a);
|
||||
|
||||
var m = dojo.math.matrix.create(a.length, a[0].length);
|
||||
|
||||
for (var i = 0; i < a.length; i++)
|
||||
for (var j = 0; j < a[i].length; j++)
|
||||
m[j][i] = a[i][j];
|
||||
return m;
|
||||
}
|
||||
|
||||
dojo.math.matrix.format = function(a){
|
||||
|
||||
function format_int(x){
|
||||
var dp = 5;
|
||||
var fac = Math.pow(10 , dp);
|
||||
var a = Math.round(x*fac)/fac;
|
||||
var b = a.toString();
|
||||
if (b.charAt(0) != '-'){ b = ' ' + b;}
|
||||
var has_dp = 0;
|
||||
for(var i=1; i<b.length; i++){
|
||||
if (b.charAt(i) == '.'){ has_dp = 1; }
|
||||
}
|
||||
if (!has_dp){ b += '.'; }
|
||||
while(b.length < dp+3){ b += '0'; }
|
||||
return b;
|
||||
}
|
||||
|
||||
var ya = a.length;
|
||||
var xa = a[0].length;
|
||||
|
||||
var buffer = '';
|
||||
|
||||
for (var y=0; y<ya; y++){
|
||||
buffer += '| ';
|
||||
for (var x=0; x<xa; x++){
|
||||
buffer += format_int(a[y][x]) + ' ';
|
||||
}
|
||||
buffer += '|\n';
|
||||
}
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
dojo.math.matrix.copy = function(a){
|
||||
|
||||
var ya = a.length;
|
||||
var xa = a[0].length;
|
||||
|
||||
var m = dojo.math.matrix.create(xa, ya);
|
||||
|
||||
for (var y=0; y<ya; y++){
|
||||
for (var x=0; x<xa; x++){
|
||||
m[y][x] = a[y][x];
|
||||
}
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
dojo.math.matrix.scale = function(k, a){
|
||||
|
||||
a = dojo.math.matrix.copy(a);
|
||||
|
||||
var ya = a.length;
|
||||
var xa = a[0].length;
|
||||
|
||||
for (var y=0; y<ya; y++){
|
||||
for (var x=0; x<xa; x++){
|
||||
a[y][x] *= k;
|
||||
}
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue